New incompressible symmetric tensor categories in positive characteristic

نویسندگان

چکیده

We propose a method of constructing abelian envelopes symmetric rigid monoidal Karoubian categories over an algebraically closed field k. If char(k)=p>0, then we use this to construct the incompressible tensor Verpn, Verpn+ generalizing earlier constructions by Gelfand–Kazhdan and Georgiev–Mathieu for n=1, Benson–Etingof p=2. Namely, Verpn is envelope quotient category tilting modules SL2(k) nth Steinberg module, its subcategory generated PGL2(k)-modules. show that are reductions characteristic p Verlinde braided in 0, which explains notation. study structure these detail and, particular, they categorify real cyclotomic rings Z[2cos(2π∕pn)], embeds into Verpn+1. conjecture every moderate growth k admits fiber functor union Verp∞ nested sequence Verp⊂Verp2⊂⋯ . This would provide analogue Deligne’s theorem 0 generalization results Coulembier, Etingof, Ostrik, shows holds Frobenius exact (in semisimple) categories, moreover, lands Verp case fusion was shown Ostrik). Finally, classify object with invertible exterior square; class contains Verpn.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor and unit for symmetric monoidal categories

Let SMC denote the 2-category with objects small symmetric monoidal categories, 1cells symmetric monoidal functors and 2-cells monoidal natural transformations. It is shown that the category quotient of SMC by the congruence generated by its 2-cells is symmetric monoidal closed. 1 Summary of results Thomason’s famous result claims that symmetric monoidal categories model all connective spectra ...

متن کامل

Tensor product for symmetric monoidal categories

We introduce a tensor product for symmetric monoidal categories with the following properties. Let SMC denote the 2-category with objects small symmetric monoidal categories, arrows symmetric monoidal functors and 2-cells monoidal natural transformations. Our tensor product together with a suitable unit is part of a structure on SMC that is a 2-categorical version of the symmetric monoidal clos...

متن کامل

Symmetric curvature tensor

Recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. Using this machinery, we have defined the concept of symmetric curvature. This concept is natural and is related to the notions divergence and Laplacian of vector fields. This concept is also related to the derivations on the algebra of symmetric forms which has been discu...

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

symmetric curvature tensor

recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. using this machinery, we have defined the concept of symmetric curvature. this concept is natural and is related to the notions divergence and laplacian of vector fields. this concept is also related to the derivations on the algebra of symmetric forms which has been discus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2023

ISSN: ['1547-7398', '0012-7094']

DOI: https://doi.org/10.1215/00127094-2022-0030